
Distributed Shortest-Path Finding
by a Micro-robot Swarm

Marc Szymanski, Tobias Breitling, Jörg Seyfried, and Heinz Wörn

Institute for Process Control and Robotics (IPR)
Universität Karlsruhe, Karlsruhe, Germany

{szymanski, seyfried, woern}@ira.uka.de

Abstract. This paper describes a distributed algorithm for solving the
shortest path problem with a swarm of JASMINE micro-robots. Each
robot is only connected via infra-red communication with its neighbours.
Based on local information exchange and some simple rules the swarm
manages to find the shortest path (shortest path in the number of robots
on the path) in a labyrinth with dead-ends and cycles. The full algorithm
and simulation results are presented in this paper.

1 Introduction

In swarm robotics an often needed behaviour is to search for interesting spots
within the workspace and to form a communication/transportation line between
the found spot(s) and another area of interest or another object.

Several researchers proposed algorithms based on signalling wavefronts to
solve shortest path problems in sensor and communication networks or the multi
robot domain. E.F. Moore described in [1] four wavefront algorithms to find the
shortest path in a maze. And also the Bellman-Ford algorithm computes the
smallest spanning tree in a maze. O’Hara and Balch described in [2] an algo-
rithm that guides robots with the help of fixed communication nodes exploiting
Payton’s pheromone algorithm. In Payton’s algorithm described in [3] a robot
close to the source will broadcast a hop count pheromone message through the
swarm. If a robot close to the target gets this message, it will send a second
hop count pheromone message in the opposite direction. All robots know the
direction vector to the target and the source now. Adding those direction vec-
tors leads to the shortest path. Two problems could occur with this algorithm.
Firstly the robots do not know if they are on the shortest path or not. If the
robots follow the gradient, they will be guided to the source or the target, but
they do not keep up a path between the source and the target. And secondly if
two robots in the swarm become source robots at the same time, the algorithm
will be confused by different directions. Inspired by those algorithms we tried to
overcome this problem. The pheromone used in our algorithm counts the hops
up and down. This enables the robots to know wether they are on the shortest
path or not despite of cycles in the maze.

We implemented a distributed algorithm, that finds the shortest path between
two initiating source robots within a labyrinth and afterwards gathers the other

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 404–411, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Distributed Shortest-Path Finding by a Micro-robot Swarm 405

robots around those initial robots while keeping a communication path between
the two sources. The shortest path is found by an unidirectional negotiation
algorithm, that sends information waves through the robot swarm.

The algorithm was evaluated in the Breve simulation environment [4] based
on a model of the real swarm robot JASMINE1, see Fig. 1.

2 The JASMINE Swarm Micro-robot

The underlying swarm micro-robot JASMINE was developed especially for
swarm robot research and swarm robot games. Despite its small size of about
27×27×35 mm3, it has excellent local communication abilities and a far distance
scanning and distance measuring sensor. The excellent communication abilities
result from six infra-red sensors and emitters arranged around the robot with a
displacement of 60◦. Those sensors could also be used for short distance mea-
surements. The far distance measuring sensor is hooked to the front of the robot.
Two differentially driven wheels give this micro-robot a high manoeuvrability at
a high speed. Optical encoders allow odometric measurements in the mm-range.
Different from many other swarm robots JASMINE supports only local commu-
nication. Long distance communication via radio frequency is not implemented
and does not correspond with the views of the construction team about swarm
robot capabilities. Figure 1 shows the JASMINE swarm micro-robot and the
sensor placement.

(a)

S0

S1

S2
S3

S4

S5

(b)

Fig. 1. (a) The micro-robot JASMINE; (b) Numbering and directions of the sensors.
Starting with sensor S0 at the robot’s front.

3 Distributed Shortest-Path Algorithm

The whole process of searching the shortest path could be separated into three
phases:
1 JASMINE is designed by the Micromechatronics and Microrobotics Group at the

Institute for Process Control and Robotics at the Universität Karlsruhe, Germany,
and the Collective Micro-Robotics Team at the Institute of Parallel and Distributed
Systems at the University of Stuttgart, Germany, for the I-SWARM project. For
more details see http://www.swarmrobot.org.



406 M. Szymanski et al.

1. uniform distribution phase and search phase,
2. shortest path negotiation phase,
3. and aggregation phase.

Whereas the uniform distribution phase ensures that all robots are uniformly
distributed through the whole maze and the aggregation phase leads to a con-
traction of the robots at the nearest sources. However, the most interesting phase
is the shortest path negotiation phase, where the shortest path finding takes place.
This paper will focus on the second phase. How a swarm could be dispersed can
be found in [5].

4 Shortest Path Negotiation Phase

During the shortest path negotiation phase each sensor has a memory for the
expected distance from and to the source df and dt. It also has to remember from
which source it received the pheromone message. This is saved in the pheromone
vector p.

df = (d0
f , d1

f , . . . , d5
f ) ∈ N

6 (1)

dt = (d0
t , d

1
t , . . . , d

5
t ) ∈ N

6 (2)
p = (p0, p1, . . . , p5) ∈ {0, 1}6 (3)

The upper index always denotes the sensor in respect to Fig. 1(b).
The robots’ values are initially set to p = −1, dt = ∞ and df = ∞. The

source robots are initialised with p = 0 for source 0 or p = 1 for source 1,
dt = ∞ and df = 0. The basic algorithm is that the sources starts sending the
message m = (0, ∞, {0, 1}) over all six outputs. If a robot receives a message

m = (d̄f , d̄t, p̄) (4)

it will store those values in the memory of the receiving sensor s

ds
t = d̄t, ds

f = d̄f , ps = p̄, (5)

and afterwards sends the message

m = (d̄t − 1, d̄f + 1, p̄), (6)

over sensors ((s + 2) mod 6), ((s + 3) mod 6) and ((s + 4) mod 6), on the oppo-
site side of the receiving sensor s. This ensures the wave like dispersion of the
pheromones. If the source gets a message from the other source it sets dt = d̄f

if (d̄f < dt) and continues to send the new message. If it gets a message with
d̄t = 0 and d̄f · 1 = dt the source knows that it got a message over the shortest
communication path. It will wait for an arbitrary number of such messages be-
fore it sends the shortest path found signal (found signal) which will start the
aggregation phase. This delay ensures that the message was really send via the
shortest path and not coincidentally via a second path.



Distributed Shortest-Path Finding by a Micro-robot Swarm 407

Table 1. Shortest path algorithm for a source robot

initialise:
df := 0; dt := ∞; p := {0, 1};
receive count := 0;

begin:
while (receive count < receive threshold) {

send( −1, df + 1, dt − 1, p);
if (received message m := (d̄f , d̄t, p̄) on sensor s) {

if (p̄ �= p) {
if (d̄f < dt)

dt := d̄f ;
if (d̄t = 0 ∧ dt = d̄f )

receive count := receive count + 1;
}

}
}

while (stop condition)
send( found signal, 0);

send(s, d̄f , d̄t, p̄) {
if (s �= −1)

send the message m := (d̄f , d̄t, p̄) over sensors
(s + 2) mod 6, (s + 3) mod 6 and (s + 4) mod 6.

else
send the message m := (d̄f , d̄t, p̄) over all sensors

}

However, this basic algorithm is too simple and would lead to problems with
cycles in the connection graph. Table 2 shows an improved algorithm for a robot,
that is not a source. As long as it does not get a signal from the sources, that
the shortest path was found (found signal) each robot does the following: After
receiving a message on sensor s the robot will test if d̄t = 0 which implies the
robot is not on the shortest path and will not commit this message any further,
because only a source robot could receive a d̄t = 0 as the distance to itself. If
d̄t > 0 the robot will update the memory on the receiving sensor if it has not
been updated before or if the received distance

d̄f ≤ min(di
f | pi = p̄; i ∈ {0, . . . , 5}) (7)

is smaller as or equal to all other distances to the goal received from the sending
source. If the memory was updated the robot will send the message updated
by (6) over the sensors on the opposite of the receiving sensor s otherwise the



408 M. Szymanski et al.

Table 2. Shortest path algorithm for a normal (non-source) robot

initialise:
df := ∞; dt := ∞; p := −1;
on shortest path := false;

begin:
while(received message m �= found signal) {

if (received message m := (d̄f , d̄t, p̄) on sensor s) {
if (d̄t �= 0) {

if ( ps = −1
∨ d̄f ≤ min(di

f | pi = p̄, i ∈ {0, . . . , 5})
∨ ds

f ≥ min(di
f | pi = ps, i ∈ {0, . . . , 5}\s) ) {

ds
t := d̄t; ds

f := d̄f ; ps := p̄;
send(s, d̄f + 1, d̄t − 1, p̄);

}
}

if (∃ i, j ∈ {0, . . . , 5} : di
t = dj

f ∧ dj
t = di

f ∧ i �= j)
on shortest path := true;

}
wait for next message();

}

goto source();

message will be blocked. A problem that could occur due to communication
problems is that a message from one source could be propagated around a loop
in the labyrinth and a robot has values from the same source on opposite sensors.
If we just use the obvious condition in (7) the robot would not accept any
messages from the other source anymore. This would lead to a live-lock and the
shortest path would never be found. To solve this, another constraint has to be
introduced:

ds
f ≥ min(di

f | pi = ps; i ∈ {0, . . . , 5}\s) (8)

Equation (8) allows to overwrite a value from one source by the other one in case,
that there is a better di

f value from the overwritten source on another sensor i.
This behaviour will iteratively lead to the case, that each robot on the shortest

path will have at least two sensors i, j, i �= j, with data from different sources
that have cross-over the same values di

t = dj
f and dj

t = di
f . The shortest path

condition is:
∃ i, j ∈ {0, . . . , 5} : di

t = dj
f ∧ dj

t = di
f ∧ i �= j. (9)

The length of the shortest communication path can be computed as dSP =
di

t + dj
f .



Distributed Shortest-Path Finding by a Micro-robot Swarm 409

It is important for the robots to know if they are on the shortest path or not.
Because the robots on the shortest path will behave as beacons for the other
robots that gather near the closest source or transport objects along this path
similar to [6]. The knowledge being or not being on the shortest path triggers
different behaviours during the aggregation phase.

5 Experiments

The simulation for evaluating the proposed algorithm is based on a model of
JASMINE. The simulation environment Breve described in [4] has been used for
the simulation of the JASMINE robots. The distributed shortest-path algorithm
was implemented in Steve2 and MDL2ε which is our further development from
MDLe by Manikonda et al., see [7].

Many simulation experiments have been performed with several source posi-
tions. Figure 2 shows an experiment3. Hundred robots have been equally distrib-
uted in Fig. 2(a) with a communication range of 20 cm. Figure 2(b) shows the
robots in the aggregation phase the white robots stand on the shortest path, the
sources are green and the black robots are moving towards the nearest source.

(a) Beginning of the negotiation phase.
White robots are the sources.

(b) Aggregation phase.

Fig. 2. Experiments with the simulation environment Breve. Black robots are normal
robots, white robots are on the shortest path.

The experiments showed that the algorithm is stable with respect to commu-
nication problems that occur randomly distributed over the robots. If a robot
cannot transmit or receive any messages it will be detected as an obstacle and
the algorithm searches another path around this robot if possible.

2 Programming language for Breve.
3 A video showing the whole experiment can be found at http://wwwipr.ira.uka.de/

∼szymansk/video/SlimeMould.avi.



410 M. Szymanski et al.

Fig. 3. State distribution during an experiment

Figure 3 shows the state distribution during an experiment. One can see that
in the beginning all robots are in the negotiation state and get a message from
either source 1 (red) or 2 (green). After 300 seconds the number of robots that
got a message from source 1 or source 2 is almost equal. After the swarm reaches
this equilibrium the robots on the shortest path become aware, that they are
on the shortest path (blue). Some time after the shortest-path has been found
the sources start emitting their aggregation message. The number of robots
that received this message (magenta) is increasing and the original negotiation
messages are suppressed.

6 Conclusion

We described an algorithm for calculating the shortest path in a maze in a
distributed manner. The experiments start from the point of equally distributed
robots and ends with robts standing on the shortest path.

We showed in several experiments that the algorithm is stable regarding com-
munication errors. This algorithm is currently not scalable in the sense that we
add more sources that should be all connected. Experiments showed if a source
with the same source identification is added the shortest path between two dif-
ferent sources will also be found. One problem for this algorithm is if an agent
is “dead” and does not respond to any input this agent will be treated as a wall.
This problem could also be seen as an advantage, because a path around this
“dead” robot will be found. This “dead” robot is nothing more than an obstacle.

7 Future Work

In the future we are going to implement the algorithm including the dispersion
part on JASMINE robots to evaluate the performance on real robots. It could



Distributed Shortest-Path Finding by a Micro-robot Swarm 411

also be compared with other algorithms that find the shortest path between two
sources in a workspace and build a communication path. And a theoretical proof
of the stability of this algorithm could be derived.

References

1. Moore, E.F.: The shortest path through a maze. In: Proc. of the International
Symposium on the Theory of Switching, Harvard University Press (1959) 285–292

2. O’Hara, K.J., Balch, T.R.: Distributed path planning for robots in dynamic en-
vironments using a pervasive embedded network. In: AAMAS ’04: Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems, Washington, DC, USA, IEEE Computer Society (2004) 1538–1539

3. Payton, D., Daily, M., Estowski, R., Howard1, M., Lee, C.: Pheromone robotics. In:
Special Issue on Biomorphic Robotics. Volume 11 of Autonomous Robots., Springer
Netherlands (2001) 319 – 324

4. Klein, J.: breve: a 3D Environment for the Simulation of Decentralized Systems and
Artificial Life. In: ICAL 2003: Proceedings of the eighth international conference on
Artificial life, Cambridge, MA, USA, MIT Press (2003) 329–334

5. Hsiang, T.R., Arkin, E.M., Bender, M.A., Fekete, S., Mitchell, J.S.B.: Online dis-
persion algorithms for swarms of robots. In: SCG ’03: Proceedings of the nineteenth
annual symposium on Computational geometry, New York, NY, USA, ACM Press
(2003) 382–383

6. Li, Q., Rosa, M.D., Rus, D.: Distributed algorithms for guiding navigation across
a sensor network. In: MobiCom ’03: Proceedings of the 9th annual international
conference on Mobile computing and networking, New York, NY, USA, ACM Press
(2003) 313–325

7. Manikonda, Krishnaprasad, Hendler: Languages, Behaviors, Hybrid Architectures,
and Motion Control. Mathematical Control Theory (1998)


	Introduction
	The JASMINE Swarm Micro-robot
	Distributed Shortest-Path Algorithm
	Shortest Path Negotiation Phase
	Experiments
	Conclusion
	Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




