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.Abstract – This article presents a bio-inspired 
communication strategy for large-scale robot swarms. 
The strategy is based on robot-to-robot interactions 
without any central communication unit. Thus, the 
emerging swarm regulates itself in a purely self-
organized way. The strategy is biologically inspired by 
the trophallactic behavior performed by social insects. 
The experiments shown in this article are performed 
with a simulation environment that was developed to 
model the properties of a specific type of swarm robot. 
We investigated the suggested communication strategy 
in several arena scenarios and studied the properties of 
some emergent collective decisions made by the robots. 

 
Index Terms – swarm robotics, communication, 

honey bee, trophallaxis 

I.  INTRODUCTION 

Within a swarm of many small-sized robots, a 
decentralized strategy of communication is crucial. 
Usually, the abilities of swarm-robots to communicate are 
very limited and communication is affected by noise. The 
study presented here is focused on a swarm of 200 robots. 
The focal robots communicate by 6 infrared LEDs and 
photodiodes. Our goal was to develop a method which 
allows the robots to regulate the swarm behavior 
autonomously without a central unit of control. The 
emerging behavior is desired to be self-organized and our 
aim was to observe a possible example of “swarm 
intelligence” within the robot swarm. 

The project is part of the EU funded I-SWARM project 
[1] which has the goal to develop a swarm of 1000 very 
small (I-SWARM robots, approx. 2mm x 2mm) robots, 
and a swarm of several tens or hundreds of bigger sized 
robots (JASMINE robots, approx. 3cm x 3cm). The swarm 
of the JASMINE robots [2] is aimed to test several control 
strategies for the final I-SWARM robots. Prior to such 
hardware-tests, we use a tailored simulation platform to 
develop, tune and test a variety of control strategies. 

The control strategy we present here is inspired by the 
trophallactic behavior of social insects. Trophallaxis is the 
exchange of fluid food by direct mouth-to-mouth contacts. 
Trophallaxis is found in insects (honey bees, wasps, 
bumble bees, ants, and termites) but also in mammals 
(vampire bats) and birds. The trophallactic behavior of 
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honeybees is reviewed in detail in [3]. [4, 5] showed, that 
trophallaxis plays an important role in the regulation of 
collective foraging decisions in honeybees. Our method is 
derived from the following example: 

An artificial feeder offering sugar solution is installed 
into a honeybee hive. A honeybee which finds the feeder 
fills its nectar crop with the offered sugar solution 
(addition-rate). Afterwards it walks towards a honey-
storage comb. During its way through the hive, the bee 
constantly spends energy which is derived from consuming 
a fraction of the sugar solution load. The higher the 
metabolic rate of the bee is, the higher this consumption-
rate will be. If the bee meets another bee on its way, there 
can be a trophallactic contact. This contact shifts 
expectedly a fraction of sugar solution of the bee with the 
higher crop load to the bee with the lower crop load 
(transfer-rate). This way, a gradient of crop load sizes 
could emerge within a honeybee colony, especially when 
the sugar-feeder is the only source for crop loads. The 
shorter the distances between the feeder and a randomly 
picked bee is, the higher its current crop-load can be 
expected. Currently, in honeybees, the importance of such 
a mechanism is unclear; our lab currently researches 
honeybee trophallactic behavior in a FWF-funded project. 

We transferred the scenario described above into the 
context of a multi-robotic cleaning scenario: An area of 
dirt, where empty robots shall aggregate, functions like the 
artificial feeder in the honeybee colony. The crop loads of 
bees are represented by internal variables (floating-point 
numbers) in each robots memory. To allow efficient 
navigation of the robots, we extended the strategy by an 
additional point: Each robot can query the “nutritional” 
status of the robots in its local neighborhood and use this 
information to navigate uphill in the gradient. When the 
swarm has to navigate between two targets, we establish 
two distinct gradients in parallel by allowing the robots to 
have two internal variables and by transferring the values 
in parallel by two distinct communication channels. 

II.  METHODS 

We used a down-scaled version of LaRoSim (= Large 
robot swarm simulator) V0.26a to perform the simulation 
experiments described in this article. The full-scale 
LaRoSim simulator treats 1000 small robots (unpublished) 
simultaneously in the arena, while the down-scaled version 
is intended to treat 100-200 of the bigger sized robots. The 
simulation environment was implemented modularly, so 
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that we now can investigate a variety of bio-inspired 
control-strategies for robot swarms in this environment, 
thus allowing comparison of the gained results. The 
“trophallaxis-derived strategy” is the first to be published; 
other strategies will be published separately. 

For testing the suggested trophallaxis-derived strategy, 
we designed a cleaning scenario containing one area of dirt 
and one area designated as “dump”. The goal for the robots 
was to pick up the dirt, to transfer the dirt items to the 
dump and to drop the dirt items there. In the first tested 
simulation scenario, the robots can directly move from the 
dirt area to the dump area. In a second simulation 
experiment, the journey of a loaded robot was made more 
difficult by a wall which was placed across the arena and 
which had to be passed by the robots through one of two 
gates. Basically the ways from dirt to dump through the 
two gates were of equal length. In additional variations of 
the 2nd scenario, the locations of the gates in the wall were 
shifted, so that the two possible paths vary in their length. 

Our simulated robots move by two wheels that can be 
driven separately, allowing curves and on-the-place 
rotations. The communicating abilities of the robots are 
simulated accordingly to the design of the real JASMINE 
robots: 6 infrared LEDs allow collision avoidance and wall 
avoidance. Robot-to-robot communication is provided by 6 
photodiodes in addition to the LEDs. The robots actively 
avoid each other by a potential-field based method. Loaded 
robots have a higher repulsive potential than empty ones. 

Each robot carries an additional Boolean (on/off) signal 
that communicates its loading state. Fig. 1 displays a 
scheme of the morphology of simulated robots. The 
simulator assumes a blind spot of approx. 30 degrees in 
between each neighboring pair of emitted LED light cones, 
but no blind spot for the photodiodes. The processes 
involved in the communication are depicted in Fig. 2. The 
following four equations describe the mathematics of the 
trophallaxis-derived control strategy: n is an index that 
allows distinction of the two used internal variables (v1 and 
v2). i is an index that specifies the robot that currently 
executes the equations. Equation (1) shows that the value 
of vn,i is affected by three terms per time step: 

 

1.) cn,i(t), is a steady reduction of the value of vn by the 
constant consumption-rate crn (2). 

2.) The communicated value of the trophallactic 
transfer of variable vn between robot i and robot j is 
denoted as tn,i,j(t). This value is calculated by using 
a given constant transfer-rate trn (3). vn,j is the value 
of the internal variable vn of the nearest neighbor. If 
the trophallactic transfer shall be performed with 
more than one neighbor, then (3) has to be 
performed with all neighbors one after another, and 
the shared amount of vn is decreased proportionally. 

3.) The increment of the value of vn,i triggered by an 
encounter of a piece of dirt (if n=1) or by an 
encounter of the dump area (if n=2). In both cases, 
a constant addition-rate arn is added to vn,i.(4). 

 

Equations (1), (2), (3) and (4) lead to a gradient which 
emerges from the point where an,i is triggered. In our 

simulations, we wanted to have two gradients, one pointing 
towards the dirt (to be followed by empty robots) and one 
pointing towards the dump (to be followed by loaded 
robots). 

 
Fig. 1 Morphology of the robots in the used simulation environment with 
special emphasis on the communication system (infrared LEDs, photo-
diodes) and on the movement systems. In the picture, the two robots can 
establish a bidirectional communication. In the picture, all 6 light cones 
of robot “a” are drawn, only the one light cone that is involved into a 
communication channel is drawn for robot “b”. 
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First preliminary results showed a general problem that 
arises if all robots walk uphill too strictly in the gradients: 
Most robots aggregate near the dirt and near the dump and 
the other areas of the arena are almost empty. If this 
happens, the “bridging” of information between dirt and 
dump gets lost. To prevent this undesirable status of the 
robot swarm, we prevented 15% of the robots from moving 
uphill in the gradients (percentage-pure-communicators). 
These robots perform a random walk with obstacle 
avoidance and perform all communicational processes 
described in equations (1) to (4). In addition to that, the 
empty robots followed the gradient established by v1 only 
in 33% of all time steps (weight-strategy-to-dirt), while the 
loaded robots followed the other gradient, established by v2 
in every time step (weight-strategy-to-dump). 

In total we performed two sets of experiments: In 
scenario one, the robots were able to pass directly from the 
dirt area in the lower left corner to the dump area in the 
upper right corner (Fig. 3). In a second experiment, the 
way was blocked by a diagonal wall that has to be passed 
by two small gates. The resulting two ways from the dirt to 
the dump were of equal length (Fig.4).  

b 

a 



 
Fig. 2 This scheme shows the basic principles of the “trophallaxis derived 
control strategy”. Robot 1 finds a piece of dirt and increases its internal 
variable v by the given addition rate (+a). All robots constantly decrease 
their internal variable v by the given consumption rate (-c). The variable v 
is constraint to be above zero. All robots that are near enough to establish 
a robot-to-robot communication link communicate their current values of 
v and transfer a fraction of the encountered difference from the robot with 
the higher value of v to the robot with the lower value of v (±t) 
 

To allow the simulation environment to make plausible 
predictions of the real robot swarm’s behavior, we applied 
several sources of noise on the communication and on the 
sensory inputs. This noise was defined as a probability of a 
total break of communication, as a uniform random noise 
on measurements of distances, on measurements of angles 
and on the communicated values during the “trophallactic 
transfers”. In our simulation environment, the floor is 
constructed in discrete way, by setting colors and other 
properties of “patches”. In contrast to that, the robots move 
in continuous routes over that floor. One patch corresponds 
to 3cm x 3cm, what corresponds approximately to the size 
of the JASMINE robots. In our simulations presented here, 
robot speed was restricted to 0.5 patches per time step, 
what corresponds to a maximum robot speed of 
1.5cm/second. The robots can sense the dump and the dirt 
only when they are already located on it. Initially, we 
distributed the robots (all empty) randomly on the arena; 
each robot was facing into a randomized direction. 

 

 
Fig. 3 A screenshot of the simulated robot swarm in the first investigated 
cleaning scenario: The swarm consisted of 200 robots. The brighter 
patches on the floor in the left lower corner indicate dirt areas, the 
brighter patches in the right upper corner indicate the dump areas. Empty 
robots are colored in white, loaded robots are colored in black. 

In all our scenarios, the Euclidean distance between dirt 
and dump was 22.6 patches. In total, 36 pieces of dirt were 
placed initially in the arena; the simulations were stopped 
after the last piece of dirt was correctly transferred to the 
dump. We had an additional “stop-condition”, which 
breaks the simulation runs after 1000 time steps 
(corresponds to 16.66 min in reality), but this stop 
condition was never triggered in a simulation run. In both 
simulation scenarios, we used the same parameter settings 
for the robot swarm (table 1). 

 

 
 

Fig. 4 A screenshot of the simulated robot swarm in the second 
investigated cleaning scenario: The swarm consisted of 200 robots. The 
brighter patches on the floor in the left lower corner indicate dirt areas, 
the brighter patches in the right upper corner indicate the dump areas. 
Empty robots are colored in white, loaded robots are colored in black. A 
diagonal wall has to be passed through one of two gates. In the parameter 
setting shown in this figure, both paths from the dirt to the dump are of 
equal distance. In other simulation settings, these two paths differ 
concerning their lengths. 

 

TABLE I 
PARAMETERS USED IN SIMULATIONS. COLUMN ‘S’ INDICATES THE SOURCE OF 

PARAMETER VALUES: ‘*’: DERIVED FROM HARDWARE SPECIFICATIONS;  
‘+’: VALUES DERIVED FROM PRELIMINARY EXPERIMENTS. 

No. Parameter S Value 
1 sensory-range + 5 robot diameters 
2 ar1 + 150 
3 ar2 + 100 
4 cr1 = cr2 + 0.003 
5 tr1 = tr2 + 0.1 
6 collision-avoidance-loaded + 0.25 * sensory-range 
7 collision-avoidance-empty + 0.75 * sensory-range 
8 avoidance-loaded-by-empty + 0.5 * sensory-range 
9 P(error-communication-break) * 10% 
10 error-angle-measurement * 15 degrees 
11 error-distance-measurement * 10% 
12 general-communication-error * 10% 
13 LED-cone-angle * 30° 
14 weight-strategy-to-dirt + 33% 
15 weight-strategy-to-dump + 100% 
16 percentage-pure-communicators + 15% 

III.  RESULTS 

A. Emerging paths of loaded robots 

In the first scenario (Fig. 3), all robots successfully 
deposited the dirt in the dump. There was no blocking 
diagonal wall and the robots approached the dump on a 
direct path as soon as they left the dirt area, due to the 
information they got via the trophallaxis-derived strategy. 
This behavior was impressive, because although the dump 
was far away (24.6 patches), they were already informed 



about the optimal direction to leave the dirt area via our 
trophallaxis-derived communication strategy. To visualize 
the path the robots choose, we stored the location of each 
loaded robot in every time step in a matrix and created a 
map of “cumulative density of robots”. This map (Fig. 5) 
clearly shows that almost all robots approached the dump 
on a directed way. 

 

 Path of loaded robots in scenario 1 (no wall) 
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Fig. 5 Cumulative density of all loaded robots throughout a simulation 
run in scenario 1: A clear direct path emerged; the loaded robots 
approached the dump directly. The shortest direct way from the dirt to the 
dump had a length of 24.6 patches. The values on the right indicate how 
many time steps a patch was occupied by a loaded robot. 

 

In scenario 2, all loaded robots successfully passed 
through the gates in the diagonal wall and approached the 
dump (Fig. 6). In an additional simulation run, we 
simulated an arena containing 2 paths with different length 
by shifting the left upper gate further away from the center 
of the wall an by shifting the right lower gate nearer to the 
center of the wall. The longer path was of length of 38.1 
patches, while the shorter path was of length of 26.8 
patches. Fig. 7 clearly shows that a majority of the loaded 
robots took the shorter way through the right lower gate in 
the diagonal wall. 

B. Emerging distribution of empty robots 

As Fig. 8 shows, the empty robots were distributed 
more evenly than the loaded robots. Nevertheless there 
was a clear aggregation of empty robots around the area of 
the dirt (lower left corner). The observed distribution was 
caused by several factors: 

 

1.) The empty robots had a significantly lower weight-
strategy-to-dirt, what lead to a higher proportion of 
random movements. 

2.) In our simulation, 15% of all robots didn’t move 
uphill in the gradient due to the setting of percentage-
pure-communicators. 

3.) There were always much more empty robots than 
loaded ones, so the collision avoidance behavior drove 
many empty robots into vast areas. This is due to the 
higher repulsive potential fields emitted by loaded 
robots in the used collision avoidance algorithm. 

 

The higher number of empty robots is also responsible 
for the higher cumulative robot densities depicted in Fig. 8 
compared to the cumulative densities depicted in Figs. 5-7. 
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Fig. 6 Cumulative density of all loaded robots throughout a simulation 
run in scenario 2: Two clear paths emerged, the loaded robots approached 
both goals at equal rate and went almost directly from dirt to one gate and 
from the chosen gate to the dump. The two possible paths had both an 
equal length of 30.3 patches. The values on the right indicate how many 
time steps a patch was occupied by a loaded robot. 
 

 Paths of loaded robots in scenario 2 (asymmetric gates) 
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Fig. 7 Cumulative density of all loaded robots throughout a simulation 
run in scenario 2, with asymmetric placement of the two gates: A strong 
path emerges through the gate that allows a shorter pathway for the 
loaded robots (26.8 patches). Only a small fraction of the robots went 
through the other gate, which allowed only a longer path from dirt to 
dump (38.1 patches). The values on the right indicate how many time 
steps a patch was occupied by a loaded robot. 
 

 Densities of empty robots in scenario 1 (no wall) 
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Fig. 8 Cumulative density of all empty robots throughout a simulation run 
in scenario 1: The robots tended to aggregate loosely around the pieces of 
dirt, but this aggregation was much weaker than the aggregation of loaded 
robots on their way from the dirt to the dump in the figures 5, 6, and 7. 
The values on the right indicate how many time steps a patch was 
occupied by an empty robot. 
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C. Efficiency of transport 

We compared the time period it took the robots to 
deposit all pieces of dirt in all three cases depicted in Fig. 
5 – Fig. 7. Fig. 9 shows, that there are small but significant 
differences in these time periods: Without a wall, it took 
the robots on average 420.3±77.5 time steps (mean ± 
standard deviation). With the symmetric setting, i.e. with 
the diagonal wall having symmetrically positioned gates, it 
took the robots on average 434.2±31.2 time steps to 
complete the task. With the asymmetric wall setting, it 
took the robots on average 508.9±139.9 time steps to 
complete the given task. Both setups, without the diagonal 
wall (N1=N2=12, z=-3.11, P<0.01, two-tailed Mann-
Whitney U-test) and with diagonal wall with symmetric 
gates (N1=N2=12, z=-2.25, P<0.05, two-tailed Mann-
Whitney U-test) were proven to allow the robots a faster 
finishing of the task compared to the asymmetric setting of 
gates. As Fig. 9 shows, the setting without wall allowed 
also a faster finishing of the task compared to the wall 
setup with symmetric gates (N1=N2=12, z=-2.19, P<0.05, 
two-tailed Mann-Whitney U-test). 
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Fig. 9 Time it took the robots to complete their task to deposit all 36 
pieces of dirt in the dump. Boxes: median values. Whiskers: 1st quartile 
to 3rd quartile. N = 12 per setting. Significance: two-tailed Mann-
Whitney-U-test, *: P<0.05, **: P<0.01. 

D. Emergent path decisions made by the robot swarm 

Figure 9 shows the impact of the gate positions on the 
robot swarms overall performance. After finding this 
result, we tested the robot swarm systematically with 
different levels of asymmetry concerning the position of 
the gates. An asymmetry-index of 0 corresponds to the 
arena setup depicted in Fig. 4 and Fig. 6. An asymmetry-
index of 1 corresponds to a more extreme version of the 
arena setup depicted in Fig. 7, having the left gate shifted 
to the very end of the diagonal wall. All asymmetry-indices 
between 0 and 1 scale the position of the left gate on the 
diagonal wall in a linear manner. In all of these setups, the 
right gate provides the shortest path from the dirt area to 
the dump area. As Fig. 10 shows, the higher the setups get 
asymmetric, thus the bigger the difference between long 
and short path gets, the sharper the swarm makes the 
collective decision to favor the shorter (right) path. 
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Fig. 10 Collective decision making of the robot swarm in the two-path 
setups: The higher the difference of length between the short path and the 
long path gets, the higher was the fraction of robots that took the shorter 
path. Bars show median values, the whiskers indicate the span between 
the 1st and the 3rd quartile. N=6 per setting. 

IV.  DISCUSSION 

In general, our simulation experiments successfully 
tested and evaluated a new control strategy of a large-scale 
robot swarm. The used simulator produced sound and 
stable results. In all cases, the robots successfully found 
the dirt, and transported it in a directed way (no random 
walk) to the dump. The suggested cleaning scenario is very 
similar to the collective food foraging performed by social 
insects, where food items have to be discovered in the 
environment and have to be carried to the nest afterwards. 
On the first sight, the emerging paths look similar to the 
pheromone trails found in ants and termites. But there are 
several significant differences found on both, on the 
proximate level and on the level of ultimate results: 

A pheromone is a substance that is released into the 
environment in very small portions. In case of ant trails, 
these pheromones are dropped on the ground, stay there 
and decay after some time. In our robot swarm, nothing 
(except dirt) is dropped on the arena floor, the whole 
system works within the emerging communication network 
and within the memory of the robots. There are important 
differences of our suggested control strategy to an ant-like 
pheromone trail: The values of the internal variables vn,i 
are not stable concerning their position in the arena. As the 
robots move through the arena, they take these memory 
places with them. Local changes of the values of vn,i lead to 
different movement patterns of the robot. This affects the 
local robot densities and this again affects the transfer of 
values of vn,i. These differences lead to significantly 
different results when we compared the ultimate results of 
our robot swarm to experiments performed with ants. In a 
setup with two possible paths of the same length, ants 
chose always one of the 2 ways (see [6] for details, the 
nonlinearity of ant foraging decisions is described in [7]). 
In contrast to that, our robot swarm equally distributes on 
both paths. This is a desired solution, because it helps to 
prevent traffic jams in a crowded arena. 

In contrast to ants, which can be trapped in prior 
foraging decisions (c.f. from [8]), honeybees are able to 
revert prior decisions [9, 10, 11]. First preliminary 



experiments suggest, that also our robot swarm can “re-
decide” in fluctuating environments (data not shown). 
Some other approaches have been developed to allow 
swarm behavior in similar ways, but these approaches 
show significant differences to the algorithm suggested by 
us: [12] used a system of communicated hop-counts to 
generate a gradient field in the arena. Other studies [13] 
used a geometric-based algorithm to spread autonomous 
robots in an arena. The evolution of collective aggregation 
behavior of a robot swarm was studied by [14]. The ability 
to approach a given target autonomously by phonotaxis 
and by optomotor behavior was investigated by [15]. 

The given task is a hard problem for robots that have no 
vision (no camera on board). Although they can sense 
obstacles and other robots by their horizontal LEDs, they 
can detect dirt items and the dump area only when they are 
already directly located on them. So the sensory range for 
the focal places (dirt and dump) is limited to a robot’s own 
size. This very poor sensory capability is compensated by 
forcing the swarm of unloaded robots to spread through the 
arena and to perform a systematic search. The suggested 
communication strategy, which is derived from the 
trophallaxis behavior found in social insects, allows these 
random explorers to aggregate in interesting areas as soon 
as the first dirt items are found accidentally by individual 
robots. This collective strategy is purely based on local 
robot-to-robot communication, so our suggested robot 
swarm fulfills all demands to be called “self-organized” 
and to show “swarm intelligence”. The loaded robots are 
informed about the location of the dump by the empty 
robots via the same communication system and directly 
approach the dump area (Fig. 5). The emerging transport 
system is “smart” enough to find passages through walls 
(Figs. 6, 7) and to select the shortest possible path in cases 
where there is a significant difference between short and 
long pathways (Fig. 10). The described system is 
composed of the following components: 

 

1.) The addition-rate (4) together with the gradient-
following behavior provides a positive feedback 
loop leading to aggregation on a desired target. 

2.) The transfer-rate (3) leads to a spread of the 
information and to a linkage of the individuals’ 
memory places. This way the robots create a shared 
map of their environment. 

3.) The consumption-rate (2) provides a constant 
negative feedback loop, which is very important to 
let outdated information vanish from the system. 
Without this important negative feedback loop, 
errors (e.g., due to communication noise) could sum 
up and let the whole swarm behavior “go mad”. 

 

To prevent traffic jams and to prevent breaks in the 
communication chains, we forced the empty robots to keep 
a certain amount of randomness in their movement 
behavior (Fig. 8). This seems inefficient on the first sight, 
but it ensures that the whole arena is consequently 
explored for dirt throughout the experimental period. So 
far, the robots in our simulation are assumed to be powered 
by solar-cells ad libitum. The robots populate the arena in 
high numbers, so we assumed crowding issues to be more 

important than energetic efficiency of the swarm. In future 
simulation experiments we will confront the robot swarm 
with fluctuating environments by randomly adding new 
dirt patches into the arena, in these setups the random 
movements of the empty robots will pay back. If one wants 
the empty robots to aggregate as sharply on the dirt as the 
loaded robots head towards the dump, only one parameter 
(weight-strategy-to-dirt) has to be adjusted in our 
suggested algorithm. In these circumstances, it is crucial to 
prevent a certain fraction of the robots from aggregation 
(percentage-pure-communicators) to ensure a consistent 
chain of robot-to-robot communication. 

The next steps in development will be an investigation 
of the trophallaxis-derived strategy in fluctuating 
environments, the optimization of the parameters shown in 
table 1 by “Evolutionary Computation” algorithms, and the 
evaluation of other bio-inspired control strategies in the 
same cleaning scenario. 
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