Author: Victor Prieto Martinez

Two main goals

- Develop a simulation system for micro-robots (~3 Months)
 - For Jasmine-III model.
 - Potentially for other micro-robots.

 Create new behavioral patterns for Jasmine-III robot (~3 Months)

- Try them in the simulation system.
- Run them in the real world.

Simulation System

- 3D model for micro-robots
 - Thought for Jasmine-III but scalable for other robots.
 - Usable for ~100 robots.
 - Easy for new users.
- Based on Breve (Steve language)
 - Open-source 3D simulation environment.
 - · OpenGL display engine.
 - Easy to build 3D simulations and artificial life.

Why is important a simulation?

• The microcontroller life is limited (~10.000 times).

- The robots are a limited resource.
- Difficult to reprogram a lot of robots.

4

Why another simulation?

• Several attempts were not valid.

We need a simulation which reflects the real world.
Easy to insert new behavioral patterns.

Why another simulation?

• Strange behaviors in the real world.

- Simulation must be equal to the real world.
- Even the strange effects.

IPVS University of Stuttgart. Institute of Parallel and Distributed Systems (IPVS).

6

Simulation parts

- Physical sensors
 - Proximity sensors, distance sensors, touch sensors, communication sensors, color sensors...
- Body
 - Physical model vs. Logic model.
- Motion
 - Move, stop, rotate, ...
- Stage
- Communication between robots
 - Essential part in cooperative behaviors .

7

Physical sensors

- Different types: Infrared, ultrasound, RF, laser,...
- Infrared Sensors

8

In Jasmine-III robot

- We can model sensors as a ray, as a cone, etc.
- We must model them as realistic as possible.

Simulated motion model

- Logic model
- Avoid physical simulation for motion
 - Wheels
 - Motors
 - Gravity center

Communication model

- Essential in cooperative behavioral patterns.
- In Jasmine-III: Based on IR sensors and confirmation protocol.
- Correct physical sensor model is extremely important.

Simulated communication model

• Requirements:

- Communication model as realistic as possible.
- Each robot has a queue with messages received.
- How does the communication work?
 - Establish a communication channel for bi-directional communication.
 - Each robot write in the queue of its neighbor.
 - Every message must be confirmed.

What is done?

- Stage model completed.
- Proximity sensor (infrared sensors) model.
- Basic motion.
- Random movement behavior.

What is to do?

- To unify different simulation implements.
- Add new sensor models (color sensor, light sensor,...).
- Communication between robots.

Simulation at the present time

To develop new behavioral patterns

- Different possibilities based on practical scenarios
 - New swarm game.
 - Cooperative perception.
 - Reach a common goal in a cooperative way.
- Minimal capabilities implemented in Jasmine-III
 - Motion.
 - Proximity Sensor.
 - Avoiding.
 - Communication.
- To make effort an behavioral (communication) part

14

How to make collective behavior?

Five steps using Jasmine-III SDK.
1. Create scenario. Real scenario or virtual scenario.
2. Define roles. Who is who?
3. Define communication signals.
4. Describe roles. Graphical representation.
5. Program roles. Write C/C++ code.

Test new patterns

- First in the simulation system
 - Prove all the basics.

- Debug the main problems: communication between robots, the robots must follow the roles, etc.

- After, few of them in the real world
 - Check and fix real problems.
 - Feedback for the simulation system.

Example collective behavior

- Communication street
 - 1. Scenario: link between two points for transmitting messages from one point to other or for moving along the street.
 - 2. Define roles: three roles.
 - Landmark that indicates the start point of the street.
 - Communication agents.
 - Scout agent.
 - 3. Define communication signals:
 - During building the street.
 - Street is finished.
 - Navigation along the street.
 - 4. Describe roles: graphics to put logic into behavior.
 - 5. Program roles: translate the graphics in C/C++ code.

Communication street

What is done?

Random movement behavior (simulation and real world)
More complex patterns are made or are being developed by other Master Thesis.

What is to do?

- Create new collective behaviors following the Jasmine-III SDK.
- Open ideas.

Questions

• Questions (?)

