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Abstract. The foraging scenario is important in robotics, because it
has many different applications and demands several fundamental skills
from a group of robots, such as collective exploration, shortest path find-
ing, and efficient task allocation. Particularly for large groups of robots
emergent behaviors are desired that are decentralized and based on local
information only. But the design of such behaviors proved to be difficult
because of the absence of a theoretical basis. In this paper, we present a
macroscopic model based on partial differential equations for the forag-
ing scenario with virtual pheromones as the medium for communication.
From the model, the robot density, the food flow and a quantity de-
scribing qualitatively the stability of the behavior can be extracted. The
mathematical model is validated in a simulation with a large number of
robots. The predictions of the model correspond well to the simulation.

Key words: macroscopic model, foraging, swarm robotics, mathemati-
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1 Introduction

The ongoing advances in electronics and robotics have made it possible to build
small robots of sizes below 3×3×3 cm3 at low cost. See website [6] for example
which is part of the European project I-SWARM [18] and also gives an overview
over other existing platforms. This evolution made it feasible to implement large
groups of 50 or more robots. While the hardware is available, the development
of the control software is still a problem. To minimize the complexity of the
entire system, the development targets simple rules and, in an allusion to nature,
one hopes for emergent behavior of the robot group that leads to the solution
of the predefined task. However, both the design of the general strategy and
the configuration of many influential parameters are in general not supported
by any guideline based on theoretical results. Therefore, the software is just
implemented using simple heuristics based on experience and a trial-and-error

1 In: E. Sahin, W. M. Spears, and A. F. T. Winfield (eds.): SAB’06 International
Workshop on Swarm Robotics. LNCS, Springer-Verlag, Berlin Heidelberg New York,
2007
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process. To fill this gap, a scientific basis that describes the behavior of robot
swarms would be desirable.

A first step could be the development of analytical models, that support
us in understanding the results obtained by simulations and experiments in a
better way. Additionally, such models help to save resources, because they are
usually faster than simulations and they give some insights before a single robot
is implemented. The use of such models for finding optimal parameters is limited
but possible, if a mapping from the abstract level to reality exists [13].

Although research in this field has just begun, a lot of results have been
published recently: A probabilistic, analytic, and macroscopic model based on
rate equations has been introduced and applied to several different scenarios by
Lerman, Martinoli, Matarić, and others and performs very well in predicting the
ratios of robots being in a certain state at a certain time [9, 12, 11]. It is based on
the assumption that the space is uniform, so that for example scenarios involving
pheromones cannot be represented using this model. However, there exist many
models that approximate spatial characteristics: For example the dimensionality
of space is reduced by modeling the movement of agents as a graph or a line of
decision points [5, 4], space is discretized using cellular automata [3], or space
is fully but only microscopically modeled using Monte Carlo simulations [21,
2]. An analytical microscopic model with respect to space based on Brownian
motion has been presented by Schweitzer [15, 16]. In some cases the derivation
of a macroscopic model from the microscopic descriptions has been performed
and presented.

The foraging scenario is an old problem in robotics and hence it has been in-
vestigated intensively. There are many variants of this scenario: A single robot or
a group of robots has to find and collect or basically only transport (food) items
to some random locations or to one defined place. A brief overview of the work
in robotics on this scenario is given in [10]. Here we focus on the situation having
one place where food can be found (we will refer to this as food) and another
place where the food should be delivered (nest). Our approach will make use
of pheromones as the tool for communication and will utilize a large number of
robots. In [14] an overview of simulations connected to this special scenario is
given and an approach is presented using two dynamic pheromones, i.e. their
distributions change over time.

An analytical macroscopic model for a variant of foraging is presented in [10].
The given rate equations are based on the assumption of homogeneous space and
no pheromones are used in the investigated scenario. In [17, 15], a spatial model
for trail formation by ants using two pheromones is given. The model is based
on differential equations that describe the agents microscopically.

2 Simulation

The analytical model will be validated with results of a simulation. As the frame-
work for our simulation we use the Breve simulator by J. Klein [8]. Here, we
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simulate a homogeneous swarm in continuous space combined with a discrete
implementation of the pheromones. Since we want to simulate big numbers of
robots over many runs, we depend on a rather simple model of the robot, that
is computationally easy to handle. In our model, the robot has circumferential
visibility, can measure distances to objects within the coverage of its sensors,
and can distinguish between other robots, the nest, food, and the wall, that
circumscribes the arena. It is also able to perceive a pheromone gradient in two
mutually orthogonal directions and to drop a certain amount of pheromone. The
robots’ locomotion is assumed to be ideal, i.e. an acceleration towards an arbi-
trary direction is possible at all times (holonomic drive mechanism). The control
of the robot is totally reactive and based on the principle of virtual physics (po-
tential field techniques), i.e. other objects have a repelling effect on it depending
on their distance and visibility [19, 7, 1]. This defines the avoidance behavior to
be similar to the collision of two particles in our real physical world.

A robot is in one of two possible states: looking for food (sf ) or returning
home to the nest (sn). Initially, all robots are randomly positioned close to the
nest with a random velocity heading to a random direction and all start in state
sf . If a robot in state sf perceives the food, it transitions to state sn. Robots
in state sn perform a transition to state sf , if they perceive the nest. We are
using two pheromones: one that should be established to increase in intensity
towards the food (pf ) and another one that increases towards the nest (pn).
To avoid immense instabilities and to simplify the scenario, pheromone pn is
chosen to be present and constant at all times. It is always guaranteed to have
a smooth gradient leading to the nest at any position. However, at least in a
grid world based on a concept of dying agents it has been shown, as mentioned
above, that a stable behavior can be reached with two dynamic pheromones
with the advantage of finding shortest paths around obstacles [14]. As a second
consequence, the robots will only be able to deposit the pheromone pf , which
they will do in state sn. The amount that is dropped by the robot at each
simulation step is set to an initial value (drop size, see Table 1) at the state
transition and decreases exponentially over time thereafter (drop decrease rate).

The pheromones are implemented by a grid of so-called patches that is laid
over the whole arena. The patches are quadratic and we have chosen a size of
s = 6 cm (for comparison: a patch fits into the area covered by the robot’s
sensors). The performance of the swarm is independent of this size as long as it
is reasonably small and both the evaporation and the diffusion rate are adapted
to it. But choosing the patch size is computationally critical because the evap-
oration and diffusion process of pheromone pf is executed at every time step,
which has to handle every single patch (complexity is O( 1

s2 )), another option
could be to update the grid only every m time steps for m > 1). Every patch
has an associated pheromone intensity i that is updated per step by

it+1 = (1 − e − d)it +
∑

n∈N

n(1 − e)
d

4
, (1)
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where e denotes the evaporation rate, d the diffusion rate and N the set of
intensities of the patches in the von Neumann neighborhood of range one except
the current patch itself. If a robot deposits some pheromone pf , the dropped
amount will be added to the intensity associated with the patch where the robot
is located at that moment. Pheromone pn is time-invariant as discussed above
(see Section 4 for the definition).

To implement the gradient ascending, the two components of the gradient
are computed from the intensities of the neighboring patches independent of the
robot’s orientation: gx = nx+ − nx−, where nx+ denotes the intensity of the
neighboring patch in positive x-direction and nx− in negative x-direction; gy is
computed analogously. The overall acceleration vector of the robot is a weighted

sum of
(gx,gy)T

|(gx,gy)T | (if |(gx, gy)T | = 0 the term is set to 0) and another vector de-

pending on sensed objects that implements the avoidance behavior.

Table 1. Simulation parameters.

Parameter Value

arena size 258 cm × 258 cm
nest position (129 cm, 195 cm)
food position (129 cm, 63 cm)
patch size 6 cm
agent diameter 2 cm
proximity sensor range 5 cm

iteration step 0.05 s
max. speed 7 cm/s
evaporation rate 0.0392 1/s
diffusion rate 0.1568 1/s
drop decrease rate 0.095 1/s
initial drop size 0.5

3 Analytical Model

In [16] macroscopic equations are presented, that are derived from microscopic
equations to describe the behavior of so-called “heatbugs”. The “heatbug” sim-
ulation bears resemblance to the scenario addressed here: Corresponding to the
pheromone, it is also a spatial property – the heat, that influences the move-
ments of the bugs and which is also manipulated by them. We use the equation
of the agent density from [16] as a starting point:

∂

∂t
S(r, t) = D

∂2S(r, t)

∂r2
− α

∂

∂r

[

∂P (r, t)

∂r
S(r, t)

]

(2)

= D∇2S(r, t) − α∇ [∇P (r, t)S(r, t)] , (3)
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where S(r, t) denotes the density of robots at position r at time t, P (r, t)
the intensity of the pheromone, D the diffusion constant, α the greediness of
following the gradient, and ∇ the gradient.

The first term describes a standard diffusion process according to Fick’s Sec-
ond Law that models the exploring robots as well as robots avoiding collisions.
The underlying assumption to motivate the application of this equation to the
scenario investigated here is: If the density of robots in the arena is inhomo-
geneous then the robots tend to move away from spots of higher density into
areas with less density. Please note that our approach of using virtual physics
in our simulation meets this assumption. Thus, the diffusion term is a suitable
mathematical description of robots performing some kind of random walk.

Because the rate of diffusion usually depends on the local density, the choice
of using a constant diffusion coefficient is a simplification justified by two con-
siderations: First, in the steady state the regions of highest density are most
relevant and these densities reside within a small interval. Second, typically the
diffusion constant has to be measured in an experiment or simulation. Having
to measure the diffusion as a function of the density means higher overhead and
demands longer running times to reach a reasonable accuracy.

The second term describes for α > 0 a gradient ascent of the robots pro-
portional to the pheromone gradient. Although applications of the pheromone
scenario could exist in which such a behavior of the robots might be desired, we
drop the proportionality to the pheromone intensity of the gradient ascent, be-
cause this corresponds to a more efficient control software of robots and results
in better stability in both the simulation and the used numerical solver of the
analytical model. This is achieved by normalizing the gradient of P to one:

∂

∂t
S(r, t) = D∇2S(r, t) − α∇

[

∇P (r, t)

|∇P (r, t)|
S(r, t)

]

. (4)

In the case of |∇P (r, t)| = 0 the second term is set to 0. However, this model
does not support several states, several pheromones, or state transitions and an
extention is necessary (note that in [15] another way of incorporating internal
states and several potential fields is given). First, we introduce the densities Sf

and Sn that describe the densities of robots in state sf and sn respectively.
Accordingly, we introduce the pheromone intensities Pf and Pn that correspond
to the pheromones introduced in the previous section. This leads to two partial
differential equations (PDE) in the same form as equation 4:

∂

∂t
Sf (r, t) = Df∇

2Sf (r, t) − αf∇

[

∇Pf (r, t)

|∇Pf (r, t)|
Sf (r, t)

]

, (5)

∂

∂t
Sn(r, t) = Dn∇

2Sn(r, t) − αn∇

[

∇Pn(r, t)

|∇Pn(r, t)|
Sn(r, t)

]

. (6)

Now we are investigating a system with multicomponent diffusion but we are
still using Fick’s law that does not model the coupling of the two diffusion
coefficients and is only exact for two components. However, this is a common
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approximation in physics and is the more accurate the higher the concentration
of the supporting medium (here: space) is, which is a suitable assumption here.
Thus these two PDE are coupled only indirectly by the state transitions and the
pheromones, which will be defined in the following.

The nest and the food are modeled as areas with special boundary conditions
that implement the state transitions. Say ∂Ωn is the boundary of the arena
around the nest. Then we define the boundary conditions at the nest as the
following:

∀r ∈ ∂Ωn :
∂Sf

∂t
(r, t) = Df∇

2Sf (r, t) − αf∇

[

∇Pf (r, t)

|∇Pf (r, t)|
Sf (r, t)

]

+Dn∇
2Sn(r − ǫn, t) − αn∇

[

∇Pn(r − ǫn, t)

|∇Pn(r − ǫn, t)|
Sn(r − ǫn, t)

] (7)

∀r ∈ ∂Ωn : Sn(r, t) = 0, (8)

where n denotes the exterior normal to the boundary (pointing towards the nest
center). The intuitive interpretation of these equations is simple: The robots in
state sn, that are close to the nest, perform a transition to sf , because they have
finished their mission to find the nest. In a trivial grid discretization of these
PDE, the boundary conditions are implemented by adding the amount of Sn

to Sf and setting Sn = 0 within the area of the nest after each iteration. The
boundary conditions at the food are defined in an analog way. The boundaries
of the arena are modeled as total isolation.

The pheromone Pn leading to the nest is assumed to be constant over time
and is just defined as it is implemented in the simulation:

Pn(r) = c1(
√

dmax −
√

d(r, rn)), (9)

where d(r, rn) is the distance to the center of the nest, dmax the maximal possible
distance, and some constant c1 that is used to adapt Pn to the absolute intensities
of Pf (see Table 2). However, every function that provides a gradient pointing
towards the nest at all positions could be used, since our model as well as the
simulation are both independent of the absolute values.

Pheromone Pf is modeled to depend on Sn directly:

Pf (r, t) = Sn(r, t)c
c3d(r,rf )
2 , (10)

where d(r, rf ) is the distance to the center of the food, and some constants
c2 < 1 and c3 depending on the pheromone dropping procedure. The underlying
consideration is that the amount of pheromone dropped per step by a robot
decreases exponentially with time. Thus the amount of pheromone that can be
dropped by a robot at a certain spot is limited by the time a robot needs to travel
from the food to this spot. Assuming a constant velocity this time is proportional
to the distance to the food.

Note that no dependency on the history of Sn is incorporated. Intuitively,
one might argue, that this direct coupling corresponds to a high evaporation
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rate of the pheromone and thus could cause instabilities in the modeled over-
all behavior of the swarm, that would not emerge for appropriate parameter
settings. However, for reasonable values of diffusion D, the history is intrinsi-
cally modeled. For the steady state this is quantitatively true and can be shown
under the assumption that at each patch the pheromone diffusion net flux is
zero. Since the robots depend on the normalized gradient only, a qualitatively
correct representation of the gradient is sufficient. For visualization, imagine a
large group of robots in state sn starting at the food and moving towards the
nest following the gradient greedily and leaving behind only few other robots
that moved to different directions due to diffusion. On the line between food
and nest they would create a pheromone trail starting high at the food and de-
creasing exponentially towards the nest because of the dropping method. Since
the density of the robots left behind would not exponentially increase towards
the nest, this situation is represented qualitatively correct in our model. Similar
considerations imply that equation 10 is a good approximation.

Table 2. Pheromone parameters.

Parameter Value

c1 1.4 · 10−4

c2 0.998
c3 10

4 Results

To simplify the following investigations, we restrict ourselves to a special case
and set αf = αn := α and Df = Dn := 1 − α = D. This class of parameter
settings is of special interest, because for example one would expect that the
configuration with the maximal flow of food belongs to this class of symmetric
diffusion settings, which is also supported by the results of our simulations. Now
only a single variable that connects the model to the simulation is left – the
diffusion D.

This diffusion parameter might be directly extracted from the robot control, if
the control method enforces a certain amount of diffusion. However, the diffusion
will typically depend on the local density also and here the diffusion is not
explicitly implemented in our control software. Thus it has to be determined from
the overall behavior in the simulation. This was done by measuring the amount
of robots that follow the pheromone gradient approximately in comparison to
those that move to any other direction at many different positions in the arena.
The average diffusion was computed by weighting these values by their local
density averaged over time.

The solution of the PDE provides us basically with the stationary density
distributions of robots in states sf and sn, if they exist. Fig. 1(a) shows a typical
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solution and Fig. 1(b) the corresponding averaged density of 30 simulation runs.
The accuracy of the model is good at positions between nest and food. However,
close to the nest and the food it suffers from the unmodeled acceleration processes
of the robots and the impossibility to represent the infinite slope of the densities
in the simulation.

Furthermore, we are interested in the resulting flow of food that is the same as
the rate of robots that perform a transition from sn to sf per time. The amount
of robots that perform a transition at the boundaries of the nest and the food
per time in our model gives a good prediction of the flow. Another estimate of
the converged flow, that turned out to be less sensitive to correctly measuring
the diffusion, is obtained by integrating the densities of the steady-state over a
line in the mid between nest and food, that is orthogonal to the shortest path
between nest and food. Say the result of this integration is I then the prediction
of the flow for the given diffusion constant D would be I(1 − D) = Iα. This is
a good approximation because the component of the pheromone gradient in the
direction orthogonal to this plane is typically small. Thus the diffusion in this
direction will also be small following Fick’s First Law that gives the diffusion

flux in the steady state: J(r) = −D
∂P (r)

∂r
. This is the method we used to predict

the flow.

In every simulation run, we drew 36 samples equidistant in time after a
transient. The results are averaged over the samples of 30 runs. More runs
would be desirable for a better statistical significance, however, due to limited
resources and the high computational demand of the simulation, that could
not be achieved. Two sets of simulation runs with two different swarm sizes
N ∈ {100, 150} were performed and we could only reach diffusion rates in the
interval 0.5 < D < 0.9. The flow decreases with the diffusion, as expected
(see Fig. 2, the error bars show the 95% confidence interval based on the t-
distribution).

In order to maximize the flow and following these results one would like to set
the diffusion as low as possible. However, our observations of the simulation in-
dicate that the lower the diffusion rate is the more unstable the system becomes.
Please note that the situation described here will only occur in simulations that
implement interference effects between agents and an unbiased gradient ascent.
If the robots follow the pheromone gradient

∂Pf

∂r
very greedily, it becomes highly

probable that they accumulate at certain spots. This might be caused by and
lead itself to local maxima in the pheromone intensities Pf , where robots of state
sf are attracted. These groups of robots block others in state sn traveling in the
opposite direction. Hence, the local intensities Pf are reinforced and more and
more robots accumulate at this spot. As a consequence, the flow of food might
even break down temporarily (compare to Fig. 3). This fact is not directly rep-
resented by the flow prediction of our model as it only gives the average flow of
a functioning swarm without modeling effects of interference. While in the flow
diagram of the model the intensity and number of oscillations only increases
with decreasing diffusion, the batch-wise flow caused by robots moving in large
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(a) Prediction of the model for the steady-state.
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(b) Averaged over 30 simulation runs with N = 100 agents.

Fig. 1. Distribution of Sf for D ≈ 0.55.
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Fig. 2. Average normalized flow of food as a function of the diffusion D.
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groups and the temporary stop of the flow appears as an overshooting in the
flow diagram of the simulation. These observations give rise to another measure
introduced in the following.
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(d) single simulation run showing unstable
behavior

Fig. 3. Food flow over time.

As a qualitative measure for the instability of the system we use a damping
constant d as it is used in control theory. The run of the flow over time can
be interpreted as a step response and modeled by a 2nd-order lag element (P-
T2). Such an element is stable for 0 < d < 1 (underdamped) as well as for
d ≥ 1 (overdamped) and shows oscillating behavior in the former region. Our
observations showed that as well in the model as in the simulation the number
and amplitude of these oscillations decrease with the diffusion.

To get reasonable results, we had to average over all available simulation
results and thus cannot give any statistical measure. For too high numbers of
robots leading to high densities the effects by interference induce a higher damp-
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ing for low diffusion rates than predicted. However, a trend can be noticed in
Fig. 4 and shows that the damping of the P-T2 element can serve as a qualitative
model for the stability of the swarm behavior.
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Fig. 4. Damping as a function of the diffusion D.

5 Conclusion and Outlook

The application of this analytical model to the foraging scenario has shown
that the overall behavior of large groups of robots can be predicted well and
described by the use of mathematical methods. Compared to the simulation the
average behavior is computed faster by three or more orders of magnitude. The
diffusion constant can be measured by the simulation within minutes. However,
this constant models abstractly a variety of basic behaviors like exploration and
collision avoidance. A direct connection to the control software does usually not
exist. Thus a found optimal diffusion constant can only serve as a broad guideline
for the development of the software.

There are a variety of possible extensions to this model: At first, it would be
desirable to model also the interferences between robots that accumulate densely
at one place, to investigate the characteristics of scalability in this scenario.
This might be achieved by combining this model and the one presented in [10]
or by better approximations of the diffusion process (Wilke or Maxwell-Stefan
diffusion). Furthermore, a scenario with two dynamic pheromones and obstacles
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as well as the adaptability to food sources that change in position or quality over
time could be investigated.

We plan to implement the presented scenario on real robots following the
approach of Sugawara et al., that implemented it for a number of up to three
robots [20]. At our institute, a swarm of 40 Jasmine robots is available (see [6]),
that will be extended soon. We also have a combination of a video projector
and a video camera installed above the arena. Additionally, light sensors on the
top of the robots are under development and will be used by the robots to per-
ceive the virtual pheromone gradient, i.e. a light gradient. The robots are able
to drop pheromones by lighting an LED on their top, which will be detected
by a computer connected to the camera and it will adapt the image projected
onto the arena accordingly. With this setting it is easily possible to simulate
scenarios physically that would actually need more technical overhead, e.g. fol-
lowing a gradient of temperature or gas concentrations. Even the combination
of the two paradigms of self-organization and central control (on demand) might
lead to synergies for example in microassembly. Self-organizing techniques pro-
vide robustness and scalability while central control techniques provide highest
accuracy if needed.
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