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a b s t r a c t

This paper describes an odometric system for autonomous microrobots based on the optical properties of
a motor–wheel transmission for motion feedback. We demonstrate that infra-red light, reflected from
this mechanical system, shows distinctive periodic changes of amplitude, correlated with the motion
of the robot. Real-time odometric signal processing, performed on a small embedded microcontroller,
allows accurate movement detection for each wheel and is used for motion control, self-calibration,
and calculation of differential and absolute velocity, displacement and rotation. We demonstrate some
applications of this on-board odometric system in swarm robot experiments. This approach can also
be applied to other industrial or academic mechatronic systems, where size or computational power
are limiting factors.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The miniaturization of devices, and especially robots, represents
an important trend in current science and technology [12]. The
current state of the art in miniaturization of fully autonomous
microrobots approximates to robots measuring 2 � 2 � 2 mm3,
where the microrobot is capable of local directional communica-
tion, perception and precise actuation in the micro-world [9,32].
However, the miniaturization of complex mechatronic systems is
challenging in terms of power supply, active perception and actu-
ation, and the achievement of extended functionality.

The functionality of small autonomous devices is extremely
limited, primarily by their small size, tiny power storage capacity,
and technological constraints. To achieve complex functionality,
the microrobotic community exploits a collective approach, in
which a large number of small and simple cooperating robots
achieve a similar complexity in terms of their collective functional-
ity, adaptivity or computational power [19]. This methodological
approach is known as swarm robotics [29] and addresses specific
research objectives, such as the spatial and temporal coordination
of a large number of microrobots [28], cooperative actuation [33],
investigation of bio-inspired [4], and evolutionary strategies [27],
modeling [24], robustness [3], self-assembling approaches [13],
and other topics. To progress towards these research objectives,
we created the flexible, cost-effective and modular ‘‘Jasmine’’ micr-
orobotic platform,1 see Fig. 1a. More than 300 of these microrobots
have been manufactured and distributed between different institu-
tions, allowing large-scale swarm robotic experiments [17].
ll rights reserved.
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The spatial coordination of a large-scale system requires the
capability for relative position identification and normalized differ-
ential and absolute velocities. This functionality is necessary for,
for example, trophallaxis [30], foraging [16], and behavioral or
other bio-inspired spatial approaches. Developing an odometric
system for a microrobot that combines acceptable accuracy, low
cost and small size represents a serious challenge. One of the main
problems lies in obtaining motion feedback from the wheels [6] or
the ground [5]. Using typical transitive/reflective optical, magnetic
or capacitive encoders installed on motors or on the wheels is al-
most impossible, because of size limits.

In this work, instead of using special encoders, we propose the
use of certain properties of the motor–wheel transmission: gear-
teeth, eccentric rotation of gears and wheels, and electric processes
in the pulse-width modulation (PWM) control of motors. We dem-
onstrate that infra-red (IR) light, reflected from the motor–wheel
transmission, shows distinctive periodic changes of signal ampli-
tude, correlated with the robot’s movement. Information about this
movement can be extracted by a real-time signal processor run-
ning on-board. However, the small microcontroller, the limited
memory (1 kB RAM) and considerable electronic noise make real-
time signal processing very problematic. For example, it is impos-
sible to store several periods of the whole signal to apply recursive
signal analysis approaches [26] or a Kalman filter [21]. In this work,
we focus on Constraint Satisfaction Problem (CSP)-based algo-
rithms for performing real-time odometric signal processing to
allow accurate detection of each wheel rotation.

Section 2 of this paper discusses the optical properties of
motor–wheel transmission for odometric purposes and considers
some solutions. Section 3 deals with real-time odometric signal
processing using only 354 bytes RAM and about 1.2 kB flash
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Fig. 1. (a) The ‘‘Jasmine’’ microrobot. (b) The reflective encoder installed in the first version of the system. (c) Geared motor–wheel coupling with painted black and white
stripes and optical sensors TCNC1000 installed perpendicularly on the motor PCB. (c) Final placement of sensors (with 60� declination) and gears without stripes.
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ROM. In this section, we also describe adaptive plausibility filters
and the detection of blocked wheels. Section 4 discusses the cali-
bration strategy for microrobots. Finally, in Sections 5 and 6 we
demonstrate our experiments and conclude this work.
2. Optical motion-feedback system in the microrobot

Typically, microrobots of <1 cm3 do not possess an on-board
motion feedback system, for various reasons. Primarily, using
piezo-actuators of a precision between a few lm and a few nm
does not offer on-board odometric systems of a resolution high en-
ough for any practical purposes. These robots use external vision-
based tracking systems for navigation and actuation. Microrobots
of >1 cm3, with DC motors, have different options for on-board
odometry: using Hall sensors in motors, analyzing the power con-
sumption of PWM control, vision-based ground tracking systems,
or optical/magnetic/capacitive encoders on the wheels. Depending
on the limits of the size and power budget of the microrobot, the
eventual choice is constrained by optical or magnetic approaches,
which do not require large components.

The ‘‘Jasmine’’ microrobot [11,18] shown in Fig. 1a has two small
DC motors with integrated planetary gearboxes. The mechanics2

consist of two plastic gears glued to the motors’ and wheels’ axes.
In this way, the force from the motors is transmitted to each of the
2 Developed by Marc Szymanski and Ramon Estana from the University o
Karlsruhe.

3 The first version was 26 � 26 � 20 mm3, the final version is 30 � 30 � 20 mm3

with 2 ATmega 328P pico-power microcontrollers.

f

wheels. The microrobot3 has two electronic boards, the motor board
and the main board, which communicate through a 200 kHz I2C
interface. The main board holds the ATmega 168 microcontroller
with 16 kB ROM, 1 kB RAM and is used for six-channel communica-
tion, proximity sensing, remote control, geometry and light sensing,
energy management, ZigBee communication, and behavioral control
of the robot. This board is also used to support the upper extension
boards of the robot. The motor board, which holds an ATmega 88
microcontroller, is used for motor control, the odometric system,
energy control, and touch and color sensing. It also provides four
channels for further sensors/actuators. The robot uses an advanced
power management system, with a Li-Po accumulator, which
provides for 1.5 h of autonomous work and the capability for auton-
omous docking to the power station and auto-recharging [16,14].

Since optical or magnetic on-board odometrical systems require
corresponding encoders to receive motion feedback from the
wheels, we tested several approaches [7,10]. First, we used
IR-reflective sensors, which are widely used in robotics, not only
for reflective odometric encoders [1] but also for navigation [8],
distance measurement [2], and self-assembly tasks [23] in modular
systems [22]. Such sensors are also used in micro- [31] and mini-
[25] robotic platforms. Second, as well as reflective wheel encod-
ers, see Fig. 1b, we also tested solutions based on analyzing the
current consumption of the DC motors, using Hall sensors installed
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on the motors, and using black and white stripes painted on the
gear, see Fig. 1c. After several tests, it became clear that the geared
coupling is the best solution, allowing not only effective force
transmission from motors to wheels, but also being well suited
for the odometric system even without painting the gear, see
Fig. 1d.

The idea behind this approach is that by illuminating gears with
an IR beam of a small opening angle, the values of the reflected
light will depend on the distance between the gear surface and
the reflective sensor. In turn, this distance depends on the position
of the gear tooth and finally on the rotation of the wheel. Sampling
frequently enough (in accordance with the Nyquist theorem), we
can reconstruct the signal, and the motion parameters, such as
the speed or angular rotation of the microrobot.

The signal received from the IR sensor has two different compo-
nents, readily visible in Fig. 2. The high-frequency signal depends
on the position of the gear tooth. The second, low-frequency, signal
is caused by eccentric rotation of the wheel. Even small deviations
(less than 0.1 mm) are readily detected by the IR sensor. The period
of this signal is exactly one turn of the wheel. In experiments, we
encountered high noise levels, produced by the microcontrollers
switching communication IR-emitters (each gate switches 20 mA
current) and by the H-bridges of both motors, which afforded con-
siderable problems in encoding a high-frequency signal.

Odometric signal processing is based on detecting maxima or
minima of signal amplitudes, shown in Fig. 2. The real displace-
ment of the robot, caused by the rotation of the wheel, can be cal-
culated as the relationship of the wheel perimeter to the number N
of detected maxima in the signal during the time t. Such detected
maxima, or odometrical periods P, are related to the number of
teeth in the gear (N = 12) in the high-resolution mode and to the
size of the whole wheel in the low-resolution mode (N = 1)

Sh ¼
pD
N
¼ 11:5p

12
¼ 3:0107 mm; ð1Þ

Sl ¼
pD
N
¼ 11:5p

1
¼ 36:1283 mm; ð2Þ

where D is the diameter of the wheel, and Sl,h the corresponding dis-
tances related to the period P. By measuring, and correspondingly
calibrating, more points n for P, we can achieve a higher resolution.
For instance, at a resolution of 0.3 mm in the high-resolution mode
and 3.6 mm in the low-resolution mode, it is enough to have n = 10
points between two signal peaks. This makes the signal frequency
Fhn;ln ¼ nN v

pD, where v is the velocity. Generally, a sampling
frequency Fh and Fl can be estimated as:
Fig. 2. The signal (without noise), obtained after ADC conversion (denoted as ‘‘ADC
values’’ in this and other figures) of the voltage from the reflective IR sensor. The
high-frequency component obtained from the gear tooth and the low frequency
component caused by the eccentric motion of a gear are visible.
Fh P 2Fhn ¼ 2nN
v
pD
¼ 240

100
36;1283

¼ 664:2992 Hz; ð3Þ

Fl P 2Fln ¼ 2nN
v
pD
¼ 20

100
36;1283

¼ 55:3583 Hz: ð4Þ

This sampling frequency means that the microcontroller should
sample every �1.5 ms and�18 ms respectively. The ADC of the AT-
mega88 microcontroller used (8 MHz clock) with a 250 kHz inter-
nal clock requires 13 cycles (52 ls) for a single conversion.

The odometry is integrated into the motor control system, see
Fig. 3. The PWM-signals for a defined motion velocity are continu-
ously provided to both H-bridges, which are periodically switched
on and off by the timer signals. This allows a saving of about 1/2–2/
3 of the energy required for continuously-powered motors. The
first time the timer interrupts, it initiates motion for the time
timerMotion. After timerMotion expires, the timer interrupts a sec-
ond time and stops the motion for the period timerMeasurement.
During this period the IR-emitters turn on and illuminate the gears.
After timerMeasurement expires, the timer interrupts again, starts
the ADC, turns off the IR-emitters, increases the variable goneDis-
tance for both wheels and initiates the motion again. The ADC
works in parallel: when the conversion is complete, the corre-
sponding interruption updates the current number of samplings
n between two maxima in the signal. In this way, the sampling fre-
quency (Fls) for 250 kHz timer frequency can be calculated (we
ignore the constant time of the interruption handler, which is
about 5–10 ls) for each wheel separately.

Fls ¼
250;000

2 � ðtimerMotionþ timerMeasurementÞ : ð5Þ

As the approach explained in Fig. 3 is applied to each wheel sep-
arately, we need to multiply the denominator of Eq. (5) by two. We
use timerMotion = 70 and timerMeasurement = 35, so that the sam-
pling frequency for each wheel is about 1190 Hz (or 0.84 ms). This
corresponds to the required high-resolution sampling frequency Fh,
and is much higher than the required Fl. This relatively high sam-
pling frequency provides a theoretical resolution of the odometri-
cal system of about 0.18–0.45 mm. Since sampling occurs with the
same frequency, only one parameter can change the number of
samples n between two maxima of the signal: changes in the
velocity of the robot, calculated as
Fig. 3. Structure of the algorithm for the odometric system. The function StartADC()
starts the ADC conversion and the corresponding interruption handler. The variable
velocity defines the PWM signal on the motors (for example the velocity of the
robot), timerMotion defines the running time of motors and timerMeasurement
regulates the exposed time of the IR LEDs (that is, the time the LEDs are on) and
thus regulates the intensity of the reflected IR signal. Critical values for the timing of
different components are demonstrated below the structure. The value of d is
calculated based on Eq. (7).
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v ¼ pDFls

n
: ð6Þ

We observe the number of samples n between 70 and 170 per
one rotation of the wheel, which points to a velocity of the robot
between 614 mm/s and 252 mm/s. The values

d ¼ Sl

n
; ð7Þ

goneDistance ¼
X

i

di ð8Þ

represent the current displacement of the robot and the accumu-
lated distance traveled by the corresponding wheel. By controlling
goneDistance in each wheel, we can determine not only the distance
traveled, but also the rotation of the robot.

3. Odometrical signal processing

The odometric signal processing should allow stabilization of
motion (the same rotation frequency of both wheels), normaliza-
tion of velocity (all robots move with the same velocity), normali-
zation of the rotation angle and finally, calculation of the distance
traveled by a robot. These four operations can be performed by
detecting one period P of the signal (corresponding to one turn of
the wheel) in terms of the number n of samples within P. The value
n allows the calculation of other parameters defined by Eqs. (6)–
(8). For the signal processing, we have only around 600 bytes of
RAM and so all calculation should be finished within 600 ls in
the interruption procedure on the 8 MHz 8-bit microcontroller.

Fig. 4 outlines the notion of real-time signal processing: We
need to detect the Max and Min peaks in the signal. When a candi-
date for Max is found, this value is temporarily stored. As long as
the Min value is found, it means that the last Max candidate is reli-
able and can be used for calculation of the next period P value. After
the next Max is found, the last Min candidate can be used for cal-
culation of P and the whole cycle repeated.

The algorithm of period detection takes the form shown in
Fig. 5. The first task is to detect the plausibility regions for Max
and Min. This is done by storing absolute aMax and aMin values
within the first 250 values obtained from the ADC and calculating
D = (Max �Min)/5. After that, the values between Max and
Max � D are set to the upper plausibility region, whereas the val-
ues between Min and Min + D are set to the lower plausibility re-
gion. The values of current Max and Min will be searched within
these intervals. The values for the current Max, Min are sequen-
tially recognized and the corresponding period P and D are calcu-
lated. The period will be also tested by an adaptive plausibility
filter, which neglects implausible values for P.

It is much easier to detect the lower peaks (Min), see Fig. 6;
these make the recognition more stable for noise (the upper peaks
period Pmax
max

min
sliding window

(a)

Fig. 4. (a) Period detection for the low-frequency si
are most suitable for high-frequency amplitudes). To detect the
period, we use a CSP-based approach, where the points phi (candi-
dates on Max) plj (candidates on Min) should satisfy the con-
straints, and are collected in Table 1. The CSP-solver delivers
good recognition of peaks (one wrong value from approximately
150 correct values) when the wheel is not displaced mechanically.
For this reason we need an adaptive plausibility filter, which
checks the values obtained for plausibility.

3.1. Adaptive plausibility filter

Despite good period recognition, distortions (primarily of
mechanical origin from sideways wheel displacement) can cause
an specific variation in the amplitude of the peaks. In this case,
the CSP detector is unable to distinguish the Min or Max peaks
within the noisy signal. This results either in one lost peak (a de-
tected period of double size) or in the appearance of smaller peri-
ods. However, this does not always mean failures in the
mechanical system; the period can suddenly become smaller or
larger, for example when a robot begins moving an object in front
of itself. See the experiments in Section 5. Therefore, we need a fil-
ter that is able to distinguish ‘‘wrong’’ smaller or larger periods
from ‘‘correct’’ ones. The structure of the adaptive plausibility filter
is shown in Fig. 7.

The major idea of the filter lies in the observation that incorrect
values of P are of a short-term nature, where correct P exist for
longer periods of time. The filter tests the values obtained for P
Min is found

look for
next Max

save
old
Max

(b)
gnal. (b) The algorithm for the period detector.
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Fig. 6. The distorted signals (motors, power switchers, microcontroller noise)
shown are constraints imposed on the peak detection.

Table 1
Constraints used in the CSP-solver for period calculation.

C Constraint Comment

C1 plj 2 aMin + D,
phi 2 aMax � D

Lower and upper peaks should lie within the
corresponding plausibility regions

C2 ph:i > j, pl:j > i The index of the Min candidate should be greater
than the index of the previous Max; the index of
the Max candidate should be greater than the index
of the previous Min

C3 ph, pl, ph, pl, . . . Min and Max should follow one after the other
C4 ph � pl > 12 To differentiate signal from noise
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and stores the number of errors. When the number of errors is
greater than a defined threshold, the filter updates the test criteria
and thus adapts itself to the altered period. The threshold values
are found experimentally; the best result being achieved when
the threshold is equal to the depth of the averaging filter used in
the control scheme. See Section 4.

3.2. Detection of blocked wheels

The odometric system possesses inertia of P/2, that is, equal to a
distance of 18.06 mm. Since a microrobot uses a stepwise change
of velocity, this inertia does not influence the odometric capabili-
ties of the robot. However, this does not improve the detection of
blocked wheels (wheels that do not rotate), which must be
Fig. 7. Algorithms of the adaptive plausibility filter.
detected without delay. There are various methods for detecting
such stoppages. Fig. 8 shows two plots, where the corresponding
wheel is blocked in two different cases: in Fig. 8a only the motor
board is running, in Fig. 8b both boards are running. Comparing
Fig. 8 with, for example, Fig. 6, we can observe difference in the
amplitude of the peaks between Min and Max. The normal differ-
ence should be more than 15 ADC values (achieved by initial
mechanical calibration of the odometric system). When the differ-
ence is less than 15, this can point to stoppage of the wheel.

Another principle of stop detection uses the fact that the detector
works sequentially on the left and the right wheels. When a wheel
does not rotate, the corresponding CSP-conditions are not satisfied
and the detector does not calculate the period P. When the detector
does not deliver P within 3–5 cycles and Max �Min > 15, these con-
ditions can also be used for reliable detection.

4. Auto-calibration of differential and absolute velocities

Fig. 9 shows an evolution of the detected period P for the first
several minutes of a robot’s motion. We observe that P undergoes
several fluctuations, is different for both motors, and drifts when
the motors become warm.

Period fluctuation is a slight variation of the period detection in
different cycles. The underlying reason for this is electronic noise,
which creates maximum close peaks higher than the true maxi-
mum (or minimum) of the signal. There is no way to remove this
effect. Therefore, we create an averaging filter that smoothes this
variation. However, this filter increases the inertia of the control
system: the system reacts to a change of period with a delay de-
fined by the averaging.

Different periods in motors primarily arise from differential
mechanical friction in the internal and external motor gears and
also from the friction of the wheels. In Fig. 9 we can see that the
period of the right motor is smaller than that of the left. That is,
the robot always turns left. To compensate for this difference,
either the left motor should receive a longer PWM signal or the
right motor a shorter one.

The motor drift is a typical nonlinear effect, which appears due
to the initial warming of the DC motors. Within the first two to
three minutes of motion their rotation frequency increases, some-
times by as much as 10–20%. Unfortunately, the motor drift is dif-
ferent for each robot (it also depends on friction in the
transmission), so that the stabilization of a defined period must
also be done by the control system.

For the control, we use a linear differential control scheme,
shown in Fig. 10. The control scheme detects differences in wheel
rotation and regulates corrections of the right and left PWM-control
signal, as well as normalizing an absolute velocity. The correction
values obtained are stored in the nonvolatile EEPROM memory.
The auto-calibration procedure is relatively quick, see Section 5,
and must be performed for all velocities available for the microro-
bot. This is also the reason why the robot has a set of 10 fixed cal-
ibrated velocities from P = 90 to P = 160. This initial correction
should be made only once; after that the robot moves with normal-
ized values and performs a small auto-correction when needed.

4.1. Systematic and non-systematic errors in the odometric system

The odometric system has several sources of systematic error.
The first is the inertia of P/2 in the period detection. When the dif-
ferential velocity is suddenly changed, the robot receives feedback
only after traveling 18 mm. Usually, this error does not have an
essential impact on behavior, because after 18 mm a robot always
performs a correction of the differential velocity.

The second source of systematic error is the inaccuracy of peak
detection, due to sampling and additive noise, see Fig. 11. This is



(a) (b)
Fig. 8. ADC values from the odometric sensor when the corresponding wheel is blocked and does not rotate. (a) Only the motor board is running (microcontroller, H-bridges
and motors) and (b) both boards are running (two microcontrollers, H-bridges, motors, power switchers of IR emitters).

 36

 38

 40

 42

 44

 46

 48

 0  20  40  60  80  100  120  140  160  180  200

D
et

ec
te

d 
pe

rio
d 

P

N, Steps

rigt motor
left motor

Fig. 9. Detected period P after the CSP-detector and the adaptive plausibility filter.
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also related to P/2. However, it is valid only for short distances. Due
to uniform distribution of sampling inaccuracy, the averaging filter
removes this effect for long-distance movement and for velocity
calibration. In only one case can this not be removed: when the
Min peaks are extremely elongated and the peak detector has prob-
lems in determining the exact position of a peak. When this
signal averaging

return

if |left P - right P| > 1

if |left P - right P| < 2

right PWMcor++ or left PWMcor--
right PWMcor-- or left PWMcor++

velocity normalization ++
velocity normalization --

if (left P or right P) != defined period
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no

no

no

depness of
averaging

Fig. 10. Structural scheme of auto-calibration of differential and absolute velocities.
happens on one wheel, the robot almost always determines the
rotation period of this wheel wrongly, and eventually slews left
or right. Moreover, a robot cannot normalize the differential veloc-
ity. Since this seldom happens (fewer than 2% of all cases), we
introduce a manual correction coefficient, which absorbs this con-
stant inaccuracy. As an alternative approach to improve the signal–
noise relationship, the surfaces of plastic gears can be slightly
changed by grinding, as shown in Section 5.

The final source of systematic errors is the nonlinear mechani-
cal friction in plastic gears. Due hand-assembling and the need to
use glue, glue residues can remain on the gear, increasing the fric-
tion in that part. Usually this effect disappears over time, however,
while it exists, it slows the rotation of one of the wheels. To com-
pensate, we again use a manual correction coefficient. Based on
preliminary tests (see Section 5), we estimate the maximum sys-
tematic error in the distance calculation (based on medium dis-
tance – 100 mm) about 6 mm – 6%, in the calculation of the
rotation angle – about 10� (90� rotation) – 11%, in the stabilization
of differential velocity – 0 (with the manual correction coefficient),
in the stabilization of absolute velocity – 3 mm/s.

There is one typical non-systematic error for odometric sys-
tems, which do not receive motion feedback from the ground:
the friction between the wheels and the ground surface. When a
robot starts moving with a velocity of more than about 400 mm/
s, the wheel turns 1–2 rotations without surface cohesion. As a re-
sult, the robot can rotate at a small random angle before moving
Fig. 11. Error in peak detection due to additive noise.



(a)

(a) (b)
Fig. 12. (a) Ten randomly-chosen identical microrobots for test implementation and experiment. (b) Modifying the plastic gear to improve the level of signal obtained from
the sensors, a varies between 2� and 4�.

(a) (b)
Fig. 13. Difference images of the motion of the first robot during the calibration phase (data for robot ID = 71). (a) Start of differential velocity calibration – the curved
trajectory is readily visible. (b) Final differential velocity calibration; transition into straight forward motion. The last segment (straight line) of the trajectory corresponds to
1655 mm, which was covered in about 3 s (v = 551 mm/s).
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straight forward. To remove this effect, especially when a defined
rotation angle or distance traveled is required, the robot should
start moving slowly.

5. Experiments

For our experiments, we randomly selected 10 of 107 currently
available identical microrobots, see Fig. 12a. As the IR sensors are
placed sideways on the motor PCB, the signal–noise relationship
can be improved by grinding the surface of the plastic gears, as
shown in Fig. 12b. During the revision of this work, we modified
seven robots in this way. Three robots remained unmodified, to
Table 2
Overview of signal parameters of robots and calibration times for large and small DP.
The min. and max. values represent the corresponding ADC values of the signal from
the IR sensors, averaged for 10 rotations of the wheels. The final three experiments
were performed with unmodified gears. Robot ID = 64 has a manual correction
coefficient of 3.

N Rob. ID R. wheel L. wheel Calibration time (s)

Max. Min. D Max. Min. D Large DP Small DP

1 54 98 74 24 86 44 42 46 6
2 80 97 69 28 138 94 44 34 9
3 28 130 94 36 120 79 41 50 8
4 18 78 51 27 177 138 39 33 7
5 71 132 102 30 128 100 28 24 8
6 51 88 64 24 112 82 30 32 9
7 30 85 53 32 103 75 28 49 10

8 64 107 76 31 146 109 37 60 10
9 78 96 75 21 82 60 22 55 8

10 37 105 82 23 75 53 23 62 9

(b)
Fig. 14. One run of the experiment, measuring the distance traveled. (a) Initial
position of robots. (b) Final position of robots after executing the command
move(180).
allow comparison of results between original and modified
elements.
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The experiments were designed to test three features of the
odometric system: (1) the self-calibration time for large and small
rotational differences between both wheels, (2) accuracy of dis-
tance measurement and (3) the odometric capability to work in
the presence of a systematic inaccuracy, for example the moving
of an object.

The idea behind the first experiment is explained in Fig. 9. Since
the robots are assembled manually, the mechanical parameters of
the right and left wheels differ. Thus, the initial period P and the
motor drift caused by heating are different for both wheels and
the odometry needs to calibrate the corresponding coefficients to
allow the robot to move straight forward. In this experiment, all
the robots were first calibrated, then had the values of their correc-
tion coefficients manually altered by 20; DP = 20 introduces a large
rotational difference. As shown in Fig. 13a, this results in the robot
following a curved trajectory in the first phase of its movement.
Table 3
Values of Dh and Ds (in mm) for three attempts.

N Rob. N Attempt 1 Attempt 2 Att

Dh Dv Dh Dv Dh

1 54 0 0 3 �10 0
2 80 12 13 5 10 �5
3 28 14 16 0 0 �6
4 18 5 �12 12 25 0
5 71 3 20 10 �18 �7
6 51 0 0 �5 10 12
7 30 �18 �5 15 �20 �10

8 64 �19 15 10 15 12
9 78 �15 �12 �15 �20 8

10 37 �20 �15 17 �20 �10

Fig. 15. Testing the accuracy of an odometric system by running a defined pattern. (a and
3D-accelerometer. (c and d) Distance traveled and rotation angle are defined only by th
Then, the odometric system calibrates the differential velocity,
see Fig. 13b, and both wheels move at the same rotational speed.
This experiment was repeated with all 10 robots. The calibration
time and the signal levels are shown in Table 2.

In addition, we measured the time needed for the correction of
a small deviation, for example between cold and warm motors. For
this, correction coefficients for warm motors were stored and used
as the correction for cold motors during the initial phase of move-
ment. Normally, DP = 3–5 is small in this case.

As we see from these data, a difference between max. and min.
values of less than 20 does not allow reliable discrimination be-
tween the signal from the IR sensors and system noise. The gears
enabled the enlarging of the peak-to-peak amplitude of the signal.
Moreover, the elongated region of the max. or min. values (that is
with many similar maximal or minimal values of a signal),
mentioned in Section 4, normally requires a manual correction
empt 3 Dh Dv

Dv Mean StDev Mean StDev

2 1 1.7 �2.6 6.4
�15 4 8.5 2.6 15.3

20 2.6 10.2 12 10.5
0 5.6 6.0 4.3 18.8

20 2 8.5 7.3 21.9
�20 2.3 8.7 �3.3 15.2

20 �4.3 17.2 �1.6 20.2

25 1 17.3 18.3 5.7
�15 �7.3 13.2 �15.6 4.0

20 �4.3 19.1 �5.0 21.7
Overall data 0.2 10.9 1.6 15.8

b) Distance traveled is defined by the odometry and rotation angle is defined by the
e odometric system.
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coefficient, as for example, robot ID = 64. Modifying the gears en-
abled the avoidance of such flat regions on the gear surface, in turn
avoiding manual corrections.

The second experiment represents a typical task for a robot:
move a pre-defined distance. It reflects two parameters: the cali-
brated velocity v for each wheel and the distance measurement,
made by accumulating the values of d for each wheel. For this
experiment, the main board transmitted the value of 180 as the
target distance (in mm). The motor board multiplied this by a coef-
ficient of 36, meaning the robot stops moving when the variable
goneDistance P 6480 (we used the factor 10 in the coefficient to
avoid calculations involving float variables). To increase accuracy,
we used the second calibrated velocity with P = 130. For this we
used d = 0.2779 mm, which corresponds to the value of distance
traveled of 180 mm. Fig. 14 shows this experiment measuring
the distance traveled. Ten robots were placed on the lines and
we transmitted the command move(180) by remote control. Prox-
imity sensing was switched off.

Table 3 shows two parameters: deviation Dh from the target
distance of 180 mm and deviation Dv from the straight line, as
shown in Fig. 14a. All the robots performed relatively well at mea-
suring the distance traveled, the maximum single Dh = 20 mm (11%
inaccuracy), the maximum averaged Dh = 7.3 mm (3.8% inaccu-
racy) and statistics for more than 30 trials with different robots
Fig. 16. Test of odometric system by moving an object.
Dh = 0.2 mm. The main inaccuracy is related to low friction be-
tween the wheels and the surface of the arena, meaning the wheels
turn without moving the robot at the first moment of movement.
This has an impact on rotation. As can be seen in Table 3, Dv has
larger Mean and StDev values than Dh. Since, during rotation,
one wheel rotates back and the other forwards, inaccuracy of rota-
tion due to low friction is relatively large.

To demonstrate this effect, and inspired by other tests of odo-
metric systems in which a robot runs in a defined pattern [6], we
reproduced one such experiment, as shown in Fig. 15. In this
experiment, the robot must move through a square and in an ideal
case, return into the point at which it began. In Fig. 15a and b we
show two runs in which a robot uses a 3D-accelerometer to define
the proper rotation angle and in Fig. 15c and d, runs in which it
uses only the odometric system. In all cases, the distance traveled
is measured only by odometry. In the first case, the distance be-
tween the initial and final points is between 5 and 40 mm; in the
second case between 50 and 300 mm.

The final experiment underlies more complex approaches, with
cooperative actuation by many robots. In this case, a robot moves
through a half-square (170 mm direct, rotation left 90, 170 mm di-
rect) and then moves an object for 25 mm. Object moving is in-
cluded because this imposes a load on the locomotive system
and stresses the odometry in calculating d, see Section 3. The
(a) Initial setup. (b–i) Images taken at 3 s intervals.



Fig. 17. Motion of one robot and moving of an object. This image is calculated as a
difference image from 50 motion images. The numbers denote areas where the
odometric system suffers systematic errors: I – area of small-angle rotation, II –
scanning area, III – shifting area.

m
m

,

Fig. 18. Distance between object and the wall for each attempt shown in Fig. 17.
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starting position of the robot and of the object are shown in
Fig. 16a. One particular run is shown in Fig. 16; the differential im-
age of the movement is made up of 50 motion images and is shown
in Fig. 17. As may be seen in this figure, the odometric system
undergoes several systematic errors in the moving and rotation
portions, as well during scanning and moving of the object. By
repeating this experiment several times with the same robot, we
are able to estimate the quality of the odometric system in terms
of variations in the final position of the object.

After moving through a half-square, the robot starts looking for
an object by scanning through ±60� with its IR beam [20]. When it
encounters an object, the robot rotates perpendicularly to it, moves
until it touches the object, moves it 25 mm and then stops. After
this, the robot is manually replaced at its starting position and
the cycle repeated. For each attempt, we measured the position
of the center of the object in relation to the edge of the perpendic-
ular wall.

Of 100 attempts (10 robots making 10 trials each, with the ro-
bots calibrated from the first experiment), 5% failed to reach the
object, and 11% failed to move it. The reason for this type of failure
was chiefly the 90� rotation, where a robot rotated through the
wrong angle and arrived at the edge of the object. We estimated
the inaccuracy of this rotation, overall attempts, as 11% (and 30%
as a maximum single inaccuracy). Thus, instead of moving the ob-
ject, the robot rotated it. We counted this type of result as a failure.
For the successful attempts (84%), the average distance between
the object and the wall varied between 25 mm and 57 mm.
Individual variations within each attempt also indicated ±20 mm.
In Fig. 18 we plot average distances and variations for each attempt.
6. Conclusion

In this paper we have discussed the odometric system for a
microrobot of 30 � 30 � 20 mm3. The odometry developed allows
the stabilization of differential and absolute velocity for a robot
that uses non-stabilized (not step) DC motors and hand-built force
transmission based on plastic gears. Moreover, the system allows
the measurement of the distance traveled with a typical accuracy
of about 4% (middle distance range, maximum inaccuracy 11%)
with a rotation of a typical accuracy of about 11% (for a single rota-
tion 690�, maximum inaccuracy 30%). The odometric system does
not use specific encoders that are difficult (sometimes even impos-
sible) to install in the microrobot, due to its size. Rather, all that is
required are two small IR-reflecting sensors, soldered sideways on
the motor PCB. To obtain motion feedback from the wheels, we use
IR-light reflected from the motor–wheel transmission system. This
approach can also be applied in other applications where size is a
limiting factor.

The most difficult issue is real-time signal processing in a small
microcontroller with limited memory. We demonstrated the main
algorithms based on the CSP-based signal processing of the rota-
tion-period detector, adaptive plausibility filter, stop-motion
detector and velocity auto-calibration. Despite considerable elec-
tronic noise in the system, the signal processing is stable; of all
tested robots, in none did the odometric system completely fail.
However, the system does have several sources of inaccuracy,
mostly of mechanical origin. In 25% of the robots a small (in the
range 1–4) manual correction coefficient is needed. The hand-
assembly of the robots also introduces systematic errors in the
odometry, which likewise need manual correction in some robots.
This procedure can be automated; when a robot moves along the
wall, in trying to keep a constant distance from the wall, it per-
forms a full self-calibration. This calibration can be avoided by
grinding a small angle on the gear to improve the signal–noise ra-
tio. Comparing the performance of modified and unmodified gears,
we observed improved results in the modified gears.

The odometric system described is an important instrument for
spatial coordination in large-scale robotic swarms. The microro-
bots can measure their distance from an object with an accuracy
of a few mm (in the medium distance range) [18]. Spatial coordina-
tion between the robots can be built on a combination of the dis-
tance sensor, odometric system, 3D-accelerometer, and the color
and touch sensors (for object classification and detection). As dem-
onstrated in several tests, using local coordination mechanisms
and this hardware combination allows coordinated activity for ob-
ject transport and pattern generation. The average accuracy, for a
distance of about 10 body lengths and one rotation of 90�, is about
1 body length of the robot. Since motion feedback is sensed from
the wheels and not from the ground, this result is comparable to
encoder-based solutions [15]. It cannot be used for precise object
manipulation by a single robot, however it is accurate and reliable
enough to be used in swarm experiments, where multiple robots
execute their tasks in parallel. Based on preliminary experiments
[10,28,33] we believe the accuracy can be improved by performing
collective odometric tasks. The exploration of these approaches –
and especially their scalability – will be the subject of further work.
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